EFFECTS OF THE AIR FLOW ON THE DYNAMIC OF PARTICLES IN THE CIRCULATING FLUIDIZED BED BOILER USING CFD SIMULATIONS

Authors

  • Asyari Daryus Program Studi Teknik Mesin Universitas Darma Persada
  • Ahmad Indra Siswantara Department of Mechanical Engineering, Universitas Indonesia, Depok, Indonesia
  • Didik Sugiyanto Program Studi Teknik Mesin Universitas Darma Persada https://orcid.org/0000-0002-4064-0235
  • Herry Susanto
  • Gun Gun R Gunadi Department of Mechanical Engineering, Politeknik Negeri Jakarta, Depok, Indonesia
  • Hariyotejo Pujowidodo Centre for Thermodynamics, Engine and Propulsion, BPP Teknologi, Serpong, Indonesia
  • Candra Damis Widiawaty Department of Mechanical Engineering, Politeknik Negeri Jakarta, Depok, Indonesia
  • Nopryandi Nopryandi Program Studi Teknik Mesin Universitas Darma Persada
  • Trisna Ardi Wiradinata Program Studi Teknik Mesin Universitas Darma Persada

DOI:

https://doi.org/10.70746/jstunsada.v12i2.235

Keywords:

Circulating fluidized bed boiler, distribution of solid, excess air, CFD simulations

Abstract

The optimum distribution of solid phase in fluidized bed system is important thing among others to achieve the best performance. One of the parameter that influences the distribution of solid is air mass flow rate. In this study, simulations of Computational Fluid Dynamics (CFD) is done where Eulerian model is used for solid particle motions and k-ε turbulence model for fluid flows. The simulations were carried out using six different air mass flow rates based on the excess air of the reactions. The air mass flow rate influenced the distribution and the velocity of solid phase, and also the pressure difference of gas inside the boiler. The results showed that the excess air between 10 % – 20 % gave the optimum results.

 

References

1. Adamczyk, W.P., G. Węcel, M. Klajny, P. Kozołub, A. Klimanek, R.A. Białecki, 2014, Modeling of Particle Transport and Combustion Phenomena in a Large-scale Circulating Bed Boiler Using a Hybrid Euler-Lagrange Approach, Journal of Particuology, 16(2014): p. 29-40.
2. Adamczyk, W.P., P. Kozołub, A. Klimanek, R.A. Białecki, M. Andrzejczyk, M. Klajny, 2015, Numerical Simulations of the Industrial Circulating Fluidized Bed Boiler Under Air- and Oxy-fuel Combustion, Applied Thermal Engineering, 87(2015): p. 127-136.
3. Adamczyk, W.P., K. Myöhänen, E.U. Hartge, J. Ritvanen, A. Klimanek, T. Hyppänen, R.A.Białecki, 2018, Generation of data sets for semi-empirical models of circulated fluidized bed boilers using hybrid Euler-Lagrange technique, Energy, 143: p. 219-240.
4. Bakshi, A, C. Altantzis, L.R. Glicksman, A.F. Ghoniem. Gas-flow Distribution in Bubbling Fluidized Beds, 2017, CFD-based Analysis and Impact of Operating Conditions, Powder Technology, 2017.
5. Daryus, A., A.I. Siswantara, S. Darmawan, G.G.R. Gunadi, R. Camalia, 2016, CFD Simulation of Turbulent Flows in Proto X-3 Bioenergy Micro Gas Turbine Combustor Using STD k-e and RNG k-ε Model for Green Building Application, International Journal of Technology, 7(2): p. 204-211.
6. Daryus, A., A.I. Siswantara, Budiarso, G.G.R. Gunadi, H. Pujowidodo, 2018, Simulasi pengaruh kecepatan gas terhadap karakteristik fluidisasi pada fluidized bed menggunakan metode CFD, [Simulation of the gas velocity effect on the fluidization characteristics of the fluidized bed using the CFD method]. Jurnal Poros, 16(1): p. 54-63.
7. Ngoh, J., E.W.C. Lim, 2016, Effects of Particle Size and Bubbling Behaviour on Heat Transfer in Gas Fluidized Beds, Journal of Applied Thermal Engineering, 105(2016): p. 225-242.
8. Shi, H., A. Komrakova, P. Nikrityuk, 2019, Fluidized beds modeling: Validation of 2D and 3D simulations against experiments, Powder Technology, 343: p. 479-494.
9. Siswantara, A.I., A. Daryus, S. Darmawan, G.G.R. Gunadi, R. Camalia. (2016). CFD Analysis of Slurry Flow in an Anaerobic Digester. International Journal of Technology, 7(2): p. 197-203.
10. Zhao, B., Q. Zhou, J. Wang, J. Li, 2015, CFD Study of Exit Effect of High-density CFB Risers with EMMS-based two-fluid Model, Chemical Engineering Science, 134(2015): p. 477-488.
11. Zi, C., J. Sun, Y. Yang, Z. Huang, Z. Liao, J. Wang, Y. Yang, G. Han, 2017, CFD Simulation and Hydrodynamics Characterization of Solids Oscillation Behavior in a Circulating Fluidized Bed with Sweeping Bend Return, Chemical Engineering Journal, 307(2017): p. 604-620.
12. Versteeg, H., W. Malalasekara, 2007, An Introduction to Computational Fluid Dynamics, the Finite Volume Method, 2nd ed, Essex, London: Pearson Educational Ltd.

Downloads

Published

2022-09-15

How to Cite

Daryus, A., Siswantara, A. I., Sugiyanto, D., Susanto, H., Gunadi, G. G. R., Pujowidodo, H., … Wiradinata, T. A. (2022). EFFECTS OF THE AIR FLOW ON THE DYNAMIC OF PARTICLES IN THE CIRCULATING FLUIDIZED BED BOILER USING CFD SIMULATIONS. Jurnal Sains & Teknologi Fakultas Teknik Universitas Darma Persada, 12(2), 10–17. https://doi.org/10.70746/jstunsada.v12i2.235