EFFECTS OF THE AIR FLOW ON THE DYNAMIC OF PARTICLES IN THE CIRCULATING FLUIDIZED BED BOILER USING CFD SIMULATIONS
DOI:
https://doi.org/10.70746/jstunsada.v12i2.235Keywords:
Circulating fluidized bed boiler, distribution of solid, excess air, CFD simulationsAbstract
The optimum distribution of solid phase in fluidized bed system is important thing among others to achieve the best performance. One of the parameter that influences the distribution of solid is air mass flow rate. In this study, simulations of Computational Fluid Dynamics (CFD) is done where Eulerian model is used for solid particle motions and k-ε turbulence model for fluid flows. The simulations were carried out using six different air mass flow rates based on the excess air of the reactions. The air mass flow rate influenced the distribution and the velocity of solid phase, and also the pressure difference of gas inside the boiler. The results showed that the excess air between 10 % – 20 % gave the optimum results.
References
2. Adamczyk, W.P., P. Kozołub, A. Klimanek, R.A. Białecki, M. Andrzejczyk, M. Klajny, 2015, Numerical Simulations of the Industrial Circulating Fluidized Bed Boiler Under Air- and Oxy-fuel Combustion, Applied Thermal Engineering, 87(2015): p. 127-136.
3. Adamczyk, W.P., K. Myöhänen, E.U. Hartge, J. Ritvanen, A. Klimanek, T. Hyppänen, R.A.Białecki, 2018, Generation of data sets for semi-empirical models of circulated fluidized bed boilers using hybrid Euler-Lagrange technique, Energy, 143: p. 219-240.
4. Bakshi, A, C. Altantzis, L.R. Glicksman, A.F. Ghoniem. Gas-flow Distribution in Bubbling Fluidized Beds, 2017, CFD-based Analysis and Impact of Operating Conditions, Powder Technology, 2017.
5. Daryus, A., A.I. Siswantara, S. Darmawan, G.G.R. Gunadi, R. Camalia, 2016, CFD Simulation of Turbulent Flows in Proto X-3 Bioenergy Micro Gas Turbine Combustor Using STD k-e and RNG k-ε Model for Green Building Application, International Journal of Technology, 7(2): p. 204-211.
6. Daryus, A., A.I. Siswantara, Budiarso, G.G.R. Gunadi, H. Pujowidodo, 2018, Simulasi pengaruh kecepatan gas terhadap karakteristik fluidisasi pada fluidized bed menggunakan metode CFD, [Simulation of the gas velocity effect on the fluidization characteristics of the fluidized bed using the CFD method]. Jurnal Poros, 16(1): p. 54-63.
7. Ngoh, J., E.W.C. Lim, 2016, Effects of Particle Size and Bubbling Behaviour on Heat Transfer in Gas Fluidized Beds, Journal of Applied Thermal Engineering, 105(2016): p. 225-242.
8. Shi, H., A. Komrakova, P. Nikrityuk, 2019, Fluidized beds modeling: Validation of 2D and 3D simulations against experiments, Powder Technology, 343: p. 479-494.
9. Siswantara, A.I., A. Daryus, S. Darmawan, G.G.R. Gunadi, R. Camalia. (2016). CFD Analysis of Slurry Flow in an Anaerobic Digester. International Journal of Technology, 7(2): p. 197-203.
10. Zhao, B., Q. Zhou, J. Wang, J. Li, 2015, CFD Study of Exit Effect of High-density CFB Risers with EMMS-based two-fluid Model, Chemical Engineering Science, 134(2015): p. 477-488.
11. Zi, C., J. Sun, Y. Yang, Z. Huang, Z. Liao, J. Wang, Y. Yang, G. Han, 2017, CFD Simulation and Hydrodynamics Characterization of Solids Oscillation Behavior in a Circulating Fluidized Bed with Sweeping Bend Return, Chemical Engineering Journal, 307(2017): p. 604-620.
12. Versteeg, H., W. Malalasekara, 2007, An Introduction to Computational Fluid Dynamics, the Finite Volume Method, 2nd ed, Essex, London: Pearson Educational Ltd.
Downloads
Published
How to Cite
Issue
Section
License
Copyright