RANCANG BANGUN LOW HEAD TURBIN PIKO HIDRO

  • Aep Saepul Uyun Sekolah Pascasarjana Univeristas Darma Persada
  • Bangun Novianto Sekolah Pascasarjana Univeristas Darma Persada
  • Erkata Yandri Sekolah Pascasarjana Univeristas Darma Persada
  • Syukri M Nur Sekolah Pascasarjana Univeristas Darma Persada
Keywords: elektrifikasi pedesaan, turbin air, piko hidro, efek pusaran

Abstract

Sumber energi listrik sangat dibutuhkan untuk memenuhi target elektrifikasi yang merata di pedesaan. Pemenuhah energi listrik di pedesaan tersebut dapat menggunakan energi setempat yang tersedia misalkan energi air. Potensi energi air yang dapat dimanfaatkan dapat berasal dari sungai-sungai kecil dengan pembangkit mini dan mikro-hidro. Tantangan terbesar dalam pemanfaatan energi air pada sungai-sungai tersebut adalah bagaimana mendesain turbin air yang sesuai dengan tipe sungai low head tersebut. Karena setiap lokasi air memiliki kondisi lokasi yang berbeda, maka desain, pemilihan jenis dan ukuran turbin yang tepat menjadi lebih penting. Penelitian ini merupakan desain secara teoritis dalam optimasi perancangan profile sudu turbin serta analisis efek pusaran air pada prestasi turbin. Metode yang digunakan dalam penelitian ini adalah dengan mengembangakan model turbin menggunakan teori sayap. Selanjutnya dengan analisis numerik dihitung analisis daya hilang pada sistem akibat pusaran air. Hasil simulasi menunjutkan bahwa sudut serang optimum menghasilkan daya prediksi sebesar 976 W, serta daya hilang pada pusaran sebesar 8 W, sementara daya hilang total sebesar 59.5W atau efisiensi sistem berkurang 6% dengan efisiensi keseluruhan sebesar 74.5%.

References

1. M. A. Haidar, M. F. M. Senan, A. Noman, and T. Radman, 2012, Utilization Of Pico Hydro Generation In Domestic And Commercial Loads, Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 518–524.
2. Mohammad Akbari, 2016, Effect of Vortex in Kaplan Turbine-Using CFD A Case Study: Rosseries Power Plant. SUDAN UNIVERSITY OF SCIENCE & TECHNOLOGY
3. DEN, 2017, Perpres Nomor 22 Tahun 2017 Rencana Umum Energi Nasional.
4. Erinofiardi et al., 2017, A Review on Micro Hydropower in Indonesia, Energy Procedia, vol. 110, no. December 2016, pp. 316–321
5. Zuhud, S. I. Cahyono, and D. D. D. P. Tjahyana, 2018, Redesign Runner Turbin Pembangkit Listrik Tenaga Pico Hydro Dengan Metode Reverse Engineering Melalui Pendekatan Teoritis, J. Tek. Mesin Indones., vol. 11, no. 2, p. 61
6. A. Lahimer, M. A. Alghoul, K. Sopian, N. Amin, N. Asim, and M. I. Fadhel, 2012, Research and development aspects of pico-hydro power, Renew. Sustain. Energy Rev., vol. 16, no. 8, pp. 5861–5878
7. goleman Daniel, B. Richard, and Mckee, 2000, Low Head Pico Hydro Power: A Review Of Available Turbine Technologies, World Renew. Energy Congr. VI
8. J. Susanto and S. Stamp, 2012, Local Installation Methods For Low Head Pico-Hydropower In The Lao PDR, Renew. Energy, vol. 44, pp. 439–447
9. P. Maher, N. P. A. Smith, and A. A. Williams, 2003, Assessment Of Pico Hydro As An Option For Off-Grid Electrification In Kenya, Renew. Energy, vol. 28, no. 9, pp. 1357–1369
10. S. Hermann, 2006, Design of a Micro-Hydro Powered Battery Charging System for Rural Village Electrification, no. March. Oldenburg: Energy and Semiconductor Research Laboratory Department of Physics Faculty of Mathematics & Science Carl von Ossietzky University
11. R. Simpson and A. Williams, 2011, Design Of Propeller Turbines For Pico Hydro.” pp. 1–15, 2011.
12. R. Simpson and A. Williams, 2006, Application Of Computational Fluid Dynamics To The Design Of Pico Propeller Turbines, Proc. Int. Conf. Renew. Energy Dev. Ctries
13. Ho-Yan, 2012, Design of a Low Head Pico Hydro Turbine for Rural Electrification in Cameroon. Ontario: The University of Guelph
14. K. Sopian and J. A. Razak, 2009, Pico Hydro: Clean Power From Small Streams, Proc. 3rd WSEAS Int. Conf. Energy Planning, Energy Saving, Environ. Educ. EPESE ’09, Renew. Energy Sources, RES ’09, Waste Manag. WWAI ’09, no. May 2015, pp. 414–419
15. M. M. Othman, J. Ab Razak, M. F. Bashar, N. S. Muhammad, and K. Sopian, 2014, CFD Analysis on the Flat Runner Blades of Propeller’s Turbine under Low Head and Low Flow Condition, Appl. Mech. Mater., vol. 699, pp. 437–442
16. M. Koirala, B. Tiwari, M. Khanal, P. Pathak, and R. Chaulagain, 2018, Design , CFD Analysis , Fabrication , Testing and Efficiency Evaluation of Low Head Pico-Propeller turbine Without Guide Vanes Design , CFD Analysis , Fabrication , Testing and Efficiency Evaluation of Low Head Pico-Propeller turbine Without Guide Vanes, Proc. IOE Grad. Conf. 2017, vol. Volume: 5, no. January 2017, p. ISSN: 2350-8914.
17. Jacob Daniel Riglin, 2016, Design, Manufacture and Prototyping of a Hydrokinetic Turbine Unit for River Application, Lehigh University
18. H. M. Ramos, A. Borga, and M. Simão, 2009, New Design Solutions For Low-Power Energy Production In Water Pipe Systems, Water Sci. Eng., vol. 2, no. 4, pp. 69–84
19. M. Chiarelli, L. Favre, N. El Hayek, E. L. Niederhauser, and L. Donato, 2019, Design Of A New Kaplan Pico-Turbine Runner Bades, IOP Conf. Ser. Earth Environ. Sci., vol. 240, no. 4
20. V. L. Vu, Z. Chen, and Y.-D. Choi, 2018, Design and Performance of a Pico Propeller Hydro Turbine Model, KSFM J. Fluid Mach., vol. 21, no. 3, pp. 44–51
21. R. A. Subekti, A. Susatyo, and P. Irasari, 2011, Perancangan Dan Analisis Prototip Unit Turbin-Generator Tipe Submersible Skala Piko Hidro Untuk Aplikasi Pada Aliran Sungai Datar, Pus. Penelit. Tenaga List. dan Mekatronik LIPI, vol. 1, pp. 1–13, 2011.
22. S. B. S. Nasution, Warjito, Budiarso, and D. Adanta, 2018, A Comparison Of Openflume Turbine Designs With Specific Speeds (Ns) Based On Power And Discharge Functions, J. Adv. Res. Fluid Mech. Therm. Sci., vol. 51, no. 1, pp. 53–60, 2018.
23. W. S. Ebhota and F. Inambao, 2016, Design basics of a small hydro turbine plant for capacity building in Sub-Saharan Africa, African J. Sci. Technol. Innov. Dev., vol. 8, no. 1, pp. 111–120.
24. T. Flaspöhler, 2007, Design of the runner of a Kaplan turbine for small hydroelectric power plants Supervisor
25. K. Menny, 2005, Hydraulische und thermische Kraft-und Arbeitsmaschinen. Ronnenberg
26. M. Polák, V. Polák, and M. Hudousková, 2016, Verification of model calculations for the Kaplan turbine design, TAE 2016 - Proc. 6th Int. Conf. Trends Agric. Eng. 2016, pp. 490–499.
27. K. Wright and D. H. Wood, 2004, The starting and low wind speed behaviour of a small horizontal axis wind turbine, J. Wind Eng. Ind. Aerodyn., vol. 92, no. 14–15, pp. 1265–1279.
28. Herry Susanto, 2017, Desain Turbin ORC (Organic Rankine Cycle) untuk Sistem Pembangkit Listrik Bersumber Energi Terbarukan Dengan Panas Rendah. Universitas Darma Persada.
29. J. Yang, P. Andreasson, C. M. Högström, and P. Teng, 2018, The Tale of an Intake Vortex and its Mitigation Countermeasure: A Case Study From Akkats Hydropower Station,” Water (Switzerland), vol. 10, no. 7, pp. 1–14
30. J. Yang, T. Liu, A. Bottacin-Busolin, and C. Lin, 2014, Effects of intake-entrance profiles on free-surface vortices, J. Hydraul. Res., vol. 52, no. 4, pp. 523–531
Published
2020-03-13