PEMANFAATAN MARITIME BIG DATA UNTUK PEMBUATAN SADS (SHIP ACCIDENT DATABASE)

Authors

  • Mohammad Danil Arifin Jurusan Teknik Sistem Perkapalan, Fakultas Teknologi Kelautan, Universitas Darma Persada

DOI:

https://doi.org/10.70746/jstunsada.v10i2.95

Keywords:

Maritime Big Data, SADS (Ship Accident Database), Kecelakaan Kapal, Keselamatan Pelayaran

Abstract

Jumlah dari data yang disimpan pada level global hampir tak terbayangkan dimana data tersebut terus tumbuh. Hal ini berarti potensi yang sangat besar untuk mengumpulkan key insight atau wawasan kunci dari berbagai informasi terutama dibidang kemaritiman, namun hanya sebagian kecil data yang dianalisis. Big Data menggambarkan volume data yang besar, baik data yang terstruktur maupun data yang tidak terstruktur. Dalam dunia maritim, Big Data digambarkan dengan banyaknya informasi mengenai kapal, pelabuhan, informasi mengenai logistik, operasional kapal, data mesin dll. Akan tetapi, data-data tersebut tidak terorganisir dan tidak termanfaatkan dengan baik. Oleh karena itu, penelitian ini bertujuan untuk memanfaatkan ketersediaan Big Data untuk membuat SADS (Ship Accident Database). SADS dibangun dengan mengintegrasikan data kecelakaan kapal, data kapal, data mesin kapal dan data pelabuhan menjadi satu kesatuan dalam relational database. Hasil luaran dari SADS adalah ektraksi data yang bisa digunakan untuk menganalisa hal- hal terkait dengan kecelakaan dan keselamatan pelayaran di Indonesia.

References

1. Sereati Hasugian., A.A. Istri Sri Wahyuni, 2018, Pemetaan Karakteristik Kecelakaan Kapal di Perairan Indonesia Berdasarkan Investigasi KNKT, Warta Penelitian Perhubungan, Volume 29, Nomor 2, March 2018
2. Arif Fadillah, Augustinus Pusaka, Mohammad Danil Arifin, 2013, Kajian Implementasi Tolok Ukur Penilaian Keselamatan Pelayaran, Seminar Nasional Teknologi Kelautan SENTA 2013, D75-D82, Surabaya, Indonesia.
3. M.D. Arifin. et al, 2017, A Study on the Support System of Ship Basic Planning by Using Marine Logistics Big Data, Proceeding of the International Conference on Computer Applications in Shipbuilding (ICCAS), Vol 1 pp 61-68
4. M.D. Arifin. et al, 2012, Distribusi Emisi Gas Buang di Perairan Selat Madura Melalui Integrasi Data AIS dan GIS Menggunakan Gaussian Plume dan Gaussian Puff Model, Jurnal Penelitian Transportasi Laut. Vol 14 pp. 221-232.
5. K.B. Artana et al, 2014, Enhancement on Methodology for Estimating Emission Distribution at Madura Strait by Integrating Automatic Identification System (AIS) and Geographic Identification System (GIS), Proceeding of the 3rd International Symposium of Maritime Sciences. pp. 219-224.
6. H. Saputra et al, 2013, Estimation and distribution of exhaust ship emission from marine traffic in the Straits of Malacca and Singapore using Automatic Identification System Data, Proceeding of The 8th International Conference on Numerical Analysis in Engineering. pp 131-142
7. Kai Ihara et al, 2018, Development of the Basic Planning Support System for Tanker using Marine Logistic Big Data), Proceeding of the Asian-Pacific Technical Exchange and Advisory Meeting on Marine Structures (TEAM 2018), pp 543-550.
8. Koide Yuki et al, 2016, Estimation and distribution of exhaust ship emission from marine traffic in the Straits of Malacca and Singapore using Automatic Identification System Data, Conference proceedings, the Japan Society of Naval Architects and Ocean Engineers, pp 545-546.
9. Ando H et al, 2015, Smart Operations: The Application of Big Data for Ship Operational Efficiency, MTI, pp. 1–30, 2015.
10. Yoshida T et al, 2016, Utilizing Big Data and the Internet of Things in Shipping, Sea Japan 2016, MTI, pp. 1–32, 2016.

11. Ando H et al, 2016, Statistical Filter-based Sensor and DAQ Fault Detection for Onboard Ship Performance and Navigation Monitoring Systems, IFAC, pp. 323–328, 2016.
12. Aoyama K et al, 2015, Monitoring System for Advanced Shipbuilding Construction Management: Extracting and Utilizing Monitoring Data by Considering the Reliability of Monitored Data, ICCAS, pp. 143–154, 2015.
13. M.D. Arifin. et al, 2018, Development of Ship Allocation Models using Marine Logistics Data and its Application to Bulk Carrier Demand Forecasting and Basic Planning Support, Journal of the Japan Society of Naval Architects and Ocean Engineers Vol. 27 pp 139-148.
14. Hamada K., Hirata N., Ihara K., Muzhoffar D.A.F., Arifin M.D, 2021, Development of Basic Planning Support System Using Marine Logistics Big Data and Its Application to Ship Basic Planning. In: Okada T., Suzuki K., Kawamura Y. (eds) Practical Design of Ships and Other Floating Structures, PRADS 2019. Lecture Notes in Civil Engineering, vol 65. Springer, Singapore. https://doi.org/10.1007/978-981-15-4680- 8_21
15. M.D. Arifin. et al, 2018, Development of Marine Logistic Database Using Automatic Identification System (AIS) and Statistical Data, Proceeding of the 30th Asian-Pacific Technical Exchange and Advisory Meeting on Marine Structures (TEAM 2016), pp 395-402.
16. M.D. Arifin, 2021, Pembuatan Sads (Ship Accident Database) Sebagai Upaya Peningkatan Keselamatan Pelayaran Di Indonesia, Prosiding Seminar Hasil Penelitian Semester Ganjil 2020/2021, Volume 8. No. 1. pp 147-160.

Downloads

Published

2020-09-13

How to Cite

Arifin, M. D. (2020). PEMANFAATAN MARITIME BIG DATA UNTUK PEMBUATAN SADS (SHIP ACCIDENT DATABASE). Jurnal Sains & Teknologi Fakultas Teknik Universitas Darma Persada, 10(2), 130–143. https://doi.org/10.70746/jstunsada.v10i2.95